
2021 ©

The Agile transformation for
manufacturing company:
4 lifehacks

The last two decades have offered plenty of proof that applying the Agile
approach to developing applications leads to dramatically more successful results
than the Waterfall approach. The Agile methodology boosts every important
indicator of programming output. Additionally, the quality of the product
improves. Our experience shows a two-fold drop in costs and four-fold
time-to-market savings for companies when using this flexible approach and set
of tools.
Why then do some manufacturing companies choose not to pivot away from the
ineffective Waterfall approach?

2021 ©

page 2

This has to do with the predictability historically rooted in manufacturing
companies’ DNA. All stages of creating their product are always based on an
unambiguously interpreted model and each step must be performed in a clear
and predictable way. You have to be able to predict per-unit costs, expenses for
components, marketing, sales. But developing custom software is
fundamentally different from producing industrial goods, and the Waterfall
approach (fixed price, fixed volume, fixed schedule) simply does not work here.

Drawn-out creation of project documentation, long periods of time for
approval, developing software without any contact with real-world users — all
this means that for a significant time while a business is busy bringing the
project to life, no actual value is created for the business, because the company
is not producing functional software. When the programming is done, it turns
out that what was developed is not exactly what the business really needs.
Moreover, the market is never standing still. Requirements can change during
the development process, yet the software does not take these changes into
account.

The Agile approach, on the other hand, allows you to deliver a product quickly,
at high quality and meet the demands of the business and the market.

Bespoke software is something that a manufacturing company might need in
the following situations:
 Developing a new product to find gaps and opportunities in their
 customer’s experience.
 Bringing outdated software up to date
 Process automation

When it comes to any of these situations, a quick solution to your problem and
immediate business results is only possible with the Agile approach.

2021 ©

page 3

In this white paper we will talk about 4 practical applications (or lifehacks) that
are essential when beginning to use Agile to transform your business:
 The baby-steps approach. Developing a product in small pieces.
 Gathering flexible requirements for rapid development.
 Lowering your expenses for quality control and support by using
 continuous integration.
 The Build – Measure – Learn cycle. Collecting live user data.

Great success begins with small victories.
Immediately applying Agile methodology (an approach new to your
organization) to a large and complex project is not the best idea.

As you implement Agile in your enterprise, the principle of “divide and conquer”
will prove more effective. You must choose some task from your
product-development plan and break it down into the smallest possible pieces

1. The baby-steps approach.
Developing a product in small pieces.

2021 ©

page 4

Let’s discuss what size project is optimal for beginning to work with iterative
delivery. Let’s start from the size of the team involved. In short, less than 850
man-hours (per month) is probably not enough. On the other hand, anything
more than 3000 man-hours (per month) would be too risky.

Now let’s consider these figures in detail.
For that, let’s take a typical (small) team consisting of:
 Product manager (PM)
The product manager links the business requirements for the product with the
Minimal Viable Products backlog starting from the first iteration.
The PM’s role is very important but, unlike the developers, he or she is not 100%
involved, in terms of working time, in the actual day-by-day delivery of any one
product. PMs generally manage delivery of 2–4 products (depending on their
size and complexity). So, for our appraisal here, we will assume that the PM is
spending 25% of his or her total working hours per week on the product, i.e.
approximately 9 hours.
 Developer 1 (100% involved in delivering; 35 hours per week)
 Developer 2 (100% involved in delivering; 35 hours per week)
 Designer (40% involved in delivering; 14 hours per week)
 QA engineer (40% involved in delivering; 14 hours per week)

In total, this team of 5 people (a portion of whom are only part-time involved)
spends 107 hours per week on the delivery (i.e. ~3 FTE). Development is carried
out in two-week sprints, and the team spends 214 hours per sprint.

The effectiveness of Agile can be seen as the team iterates over the product,
creating small functional parts thereof and then testing them with customers
and tweaking them (and thus the product as a whole) as development
progresses.

In our experience, to get a functional end-product, a team must iterate (i.e.
operate in Build–Measure–Learn cycle mode: generate ideas, swiftly implement
them, test them and tweak the product based on the data and any new ideas
that then make their way into the next iteration of the cycle) for at least 4
sprints of 214 hours each. Thus one can say that delivering a product to market
within the Agile framework takes at least 856 hours.

You will encounter many skeptics in your industry who seriously claim that
corporate and industrial projects are difficult to break down into small
components. That is just not factual.

Take a careful look again at your projects and you will clearly see that each
product, and each technical implementation, can be broken down into
subcomponents ideally suited for iterative delivery.

2021 ©

page 5

Waterfall, business analytics, documentation running into the hundreds of
pages, Gantt charts.
All of that is so very copious yet... useless. Sounds familiar?

A minimum of six months are spent on collecting, analyzing, and formalizing
data for a future product. The result is a thick stack of pages rigorously setting
out the structure of the product, the draft documentation for web services and
mobile applications, and the requirements for the design of the service and the
user interfaces. The stages and deadlines for manufacturing are effectively laid
out in aesthetically pleasing Gantt diagrams: each stage has clear dates for
starting and ending work on it, each stage gives way to the next, and the
finished product is ready for delivery just in time.

Everything seems to be in order. What could be wrong here?

 There are two problems.

Problem number one. Six months have gone by, but in spite of the mighty tomes
of documentation and intricate charts, no actual value has been created for the
business. The company has come no closer to a functional software or app.

Problem number two. All these charts are just not going to work. And no one is
going to read all those pages.
The real-world requirements dictated by the market will have changed even
before you finish drawing up the documentation. That perfect picture with
stages beginning and ending on a strict schedule, will break down when it
meets reality and the first change has to be made to the stages. In all honesty,
deep down inside you are already aware of all this.

How can you avoid this six months’ standstill when no value is delivered and
your software starts to lose its edge, before development has even started?

Answer: you need to try a flexible set of requirements, the goal of which is to
maximize your product’s consumer value while minimizing your losses.

2. Gathering flexible requirements for
rapid development

Let’s discuss what size project is optimal for beginning to work with iterative
delivery. Let’s start from the size of the team involved. In short, less than 850
man-hours (per month) is probably not enough. On the other hand, anything
more than 3000 man-hours (per month) would be too risky.

Now let’s consider these figures in detail.
For that, let’s take a typical (small) team consisting of:
 Product manager (PM)
The product manager links the business requirements for the product with the
Minimal Viable Products backlog starting from the first iteration.
The PM’s role is very important but, unlike the developers, he or she is not 100%
involved, in terms of working time, in the actual day-by-day delivery of any one
product. PMs generally manage delivery of 2–4 products (depending on their
size and complexity). So, for our appraisal here, we will assume that the PM is
spending 25% of his or her total working hours per week on the product, i.e.
approximately 9 hours.
 Developer 1 (100% involved in delivering; 35 hours per week)
 Developer 2 (100% involved in delivering; 35 hours per week)
 Designer (40% involved in delivering; 14 hours per week)
 QA engineer (40% involved in delivering; 14 hours per week)

In total, this team of 5 people (a portion of whom are only part-time involved)
spends 107 hours per week on the delivery (i.e. ~3 FTE). Development is carried
out in two-week sprints, and the team spends 214 hours per sprint.

The effectiveness of Agile can be seen as the team iterates over the product,
creating small functional parts thereof and then testing them with customers
and tweaking them (and thus the product as a whole) as development
progresses.

In our experience, to get a functional end-product, a team must iterate (i.e.
operate in Build–Measure–Learn cycle mode: generate ideas, swiftly implement
them, test them and tweak the product based on the data and any new ideas
that then make their way into the next iteration of the cycle) for at least 4
sprints of 214 hours each. Thus one can say that delivering a product to market
within the Agile framework takes at least 856 hours.

You will encounter many skeptics in your industry who seriously claim that
corporate and industrial projects are difficult to break down into small
components. That is just not factual.

Take a careful look again at your projects and you will clearly see that each
product, and each technical implementation, can be broken down into
subcomponents ideally suited for iterative delivery.

2021 ©

page 6

A crucial thing here is avoiding a situation where key technical and
user-interface design decisions are drawn up by a single person, who works
without the involvement of a cross-functional team, and t without the
knowledge that the team members have.

Flexible gathering of requirements is something that only a group of people can
carry out.
The goal is to reach a common understanding among the entire team of what
the end results should be, including the needs of stakeholders and customers.
The group needs real working meetings (COVID has lent legitimacy to online
meetings). The duration of these meetings ranges from 4 hours to 2 days.
During the meeting, the participants define the personas and the user stories
characteristics for those personas (grouping what functional blocks can be
obtained for the product), and they create an outcome-based product
roadmap.

Personas capture the characteristics of users that have some goal, that is, a
problem that must be solved or a benefit that your software should provide.
Any new functionality added to the product must now be defined in relation to
how a particular persona acts.

User stories are brief statements of intent describing what the product should
do for a particular persona. They represent small fragments of valuable
functionality that can be implemented within a single sprint.

2021 ©

page 7

User stories are brief, easily readable statements that the team, stakeholders,
and users can understand. User stories are easy to define, and it is also easy to
judge the effort required to implement them. To write user stories you do not
need documentation running into the many pages. Instead, they are organized
as lists (backlogs), which are easy to order and reorder as new information
comes in.

The team further groups user stories into a backlog/release (sprint) plan for
delivering the product. The release plan should be based on outcomes, not on
outputs. That is, the result of each sprint should be a functional part of the
product, and not a mere list of completed tasks that are not actually usable in
practice.
Creating a release plan happens in three stages:
 prioritizing user stories;
 choosing a limited set of user stories for each sprint (higher-priority user
 stories go into an earlier sprint);
 defining the target outcome for each sprint.

The flexible requirements represented as user stories and grouped into a
release plan, make for a shared understanding among the members of a
cross-functional team. Each team member feels like a coauthor of the product,
since they each contribute their own ideas and are involved in really delivering
the product.

Thus, having a meeting to define flexible requirements that precedes the start
of development, is quite effective: you will spend 1–2 days, but the team will
have enough information to begin working and to supply functional software.

Before the start of each sprint, the array of user stories to be implemented
within it is reviewed by the team (together with stakeholders) depending on the
results of previous sprints, any new understandings of the product, and shifts
in priorities in the backlog. A change in requirements, like any new input, can
easily be updated in a central live repository that every member of the team
has access to.

In summary, you can say that a flexible set of requirements helps bring forth
working software instead of mere comprehensive documentation, while also
responding to real-world changes instead of following a strict plan that may no
longer be relevant. These are two of the four basic cornerstones of the Agile
manifesto.

2021 ©

page 8

The usual scenario for product development might look approximately like this:
engineers work on local computers and check the code into a source repository
(Git or similar). Each developer creates their own part of the product locally and
tests their own code out.
The serious problems come when you start the code-merging and testing
phase. A heap of conflicts arises, integrations don’t work, the bugs or defects
found by your testers are set down in opaque Excel documents. Consequently,
the deadline is shifted forward for this product that everyone worked on
individually, and the launching of actual functionality is postponed to the last
phase of development.
This is where a major hitch arises: no explanations or forecasts for the cost and
time needed to fix defects, are going to pass muster with the project’s sponsor.
And all because these problems/defects/clashes in integration were detected
after development was completed and the budget had been depleted, while no
actual functionality has been supplied. It is not clear what can be done now.

To not end up in such a situation, one must use a development methodology of
continuous integration (CI) and a set of tools that allow engineers to integrate
their code daily into a common repository. The CI platform runs automated
tests and builds the product, allowing members of the team to identify any
defects and inconsistencies immediately after the source code is checked in.

The products you are making should have separate environments for
development, code merging, testing, demonstrations for stakeholders, and
production.
These are essential, and if you do not have the proper conditions for all this yet,
then you need to create them: invest in infrastructure in order to create an
environment for gathering code and implementing continuous integration. The
use of cloud solutions will allow you to avoid large equipment costs for your
infrastructure, assuming of course that your business’s security policy allows
this.

In any event, a CI setup imposes certain costs towards specialists with special
skills, equipment, and software licenses. However, these costs will be much
lower than what you will earn in terms of reduced testing costs, a better-quality
product, and faster delivery.

3. Lowering your expenses on quality
control and support by using
continuous integration

2021 ©

page 9

The entire environment can be configured, e.g. like this:

Once more on the advantages of CI.

1. The code merging is conflict-free: the team uses a single repository to which a
team member commits his or her code at least once daily.

2. At day’s end the CI platform prepares a nightly build of the product in the
code-merging environment and performs all automated tests. This allows you to be
sure that when product builds are prepared in the testing, demonstration, and
production environments, there will be no problems and everything will go
through automatically.

3. By using continuous-integration methods, you lower your expenses on quality
control and support, because the CI platform automatically conducts a
maximum of tests without team members having to intervene, and it
immediately issues recommendations on fixes to be made.

2021 ©

page 10

Very often companies spend months, sometimes years developing and
perfecting a new product. Yet all that time they do not show the product to a
potential buyer, even in just some basic form. They do everything quietly
without attracting attention from consumers. So, after a year of painstaking
work, such companies bring out the final version of their product, only to be
met with disappointment, as it is practically impossible to get wide takeup from
customers, who had never been shown the product before. Even if customers
begin to use the product, it turns out that they do not like it much, the product
does not meet their needs, etc. As a result, the product fails in the marketplace.

Avoiding such disappointing outcomes is something that the
Build–Measure–Learn feedback cycle can help with as you develop your
product.

The Build–Measure–Learn cycle includes the following stages of work on the
product: creating small functional parts out of the overall product; testing these
small parts out with potential customers and judging their reaction; and
learning lessons from the results of testing and making changes to the product,
with the aim of better meeting customers’ expectations (see the image below).
The aim of Build–Measure–Learn consists of continually improving your
product during the development process, so that you bring to market precisely
that product which your customers demand.

4. The Build – Measure – Learn cycle.
Collecting live user data.

In practice, this means that the Build–Measure–Learn cycle becomes an
important part of your two-week iterations, or sprints. In essence, during each
sprint the team creates, tests, and demonstrates specific functionality of the
product. Through constant evaluation learning from it, the team can adapt
more productively, as well as gain clearer business requirements for achieving
the set goals. Thus, all interested parties can test out and improve an actually
working product on the fly.

As a result, the business gets a product that customers need, exactly what the
business was counting on. In addition, during this process, the team generates
creative and technical ideas and tests their viability, thereby improving the
product without impacting the overall budget.

Launching a new product is always fraught with a great deal of uncertainty, and
the Build–Measure–Learn approach is optimal for testing out a hypothesis
within such an environment. A company that rolls out the
Build–Measure–Learn cycle in the making of its products, learns faster than its
competitors and creates products with real value and measurable business
results in the competitive marketplace.

Naturally, introducing Agile into practice is a vaster subject than we have
touched on in this white paper. Certain topics have not been dealt with here,
whether general ones like how methodology changes might be linked to
changes in the company’s structure and culture, or utilitarian matters like the
types of meetings arranged by the Agile team and other stakeholders when
preparing for sprints and carrying them out, approaches to project budgeting,
and developing metrics for delivery.

This is not about an exhaustive description of the Agile philosophy and techniques.

Something should serve as the starting point for changes within your company.
The four principles outlined here are essentially changes in processes, and to
start using them does not impact the architecture of the company’s main
platforms. It is something that is safe, the first baby step towards transforming
your business through Agile. However, this step alone can already have an
impressive effect in terms of reducing costs and speeding up delivery.

Begin using Agile effectively:
start with your customers

2021 ©

page 11

The key thing is to choose initiatives from among your company’s
product-development plan where you can start to use the Agile approach.
Again, do not delve into the depths of your manufacturing process. Choose
initiatives that are focused on your clients, for example optimizing your
electronic front office. Especially suitable are projects for developing online
self-service or personalized customer service, as well as mobile and web
applications that simplify the ordering process for your products or allow
customers to receive needed information in a form convenient for them.

We are a custom software development firm, delivering data-driven products
that provide better engagement and interaction for our client’s stakeholders
and customers. We plan, design, engineer, transform, optimize and automate
to solve real business objectives for manufacturing companies focusing on
product development, process automation and legacy software
transformation.

159 N Sangamon St, 2nd floor
Chicago, IL 60607

https://devvela.com

About Devvela

Devvela Inc

2021 ©

page 12

